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Abstract

We aimed to evaluate the value of ATN biomarker classification system (amyloid

beta [A], pathologic tau [T], and neurodegeneration [N]) for predicting conversion

from mild cognitive impairment (MCI) to dementia. In a sample of people with MCI

(n = 415) we assessed predictive performance of ATN classification using empiri-

cal knowledge-based cut-offs for each component of ATN and compared it to two

data-driven approaches, logistic regression andRUSBoostmachine learning classifiers,

which used continuous clinical or biomarker scores. In data-driven approaches, we

identified ATN features that distinguish normals from individuals with dementia and

used them to classify persons with MCI into dementia-like and normal groups. Both

data-driven classification methods performed better than the empirical cut-offs for

ATNbiomarkers in predicting conversion to dementia. Classifiers that used clinical fea-

tures performed as well as classifiers that used ATN biomarkers for prediction of pro-

gression to dementia. We discuss that data-driven modeling approaches can improve

our ability to predict disease progression andmight have implications in future clinical

trials.
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1 NARRATIVE

1.1 Contextual background

Alzheimer’s disease (AD), an irreversible, progressive brain disorder, is

the most common cause of dementia in the elderly.1 Despite the high

burden of AD on patients and communities, disease-modifying treat-

ments for AD are not available.2 High failure rates in AD clinical trials

has been attributed to incomplete knowledge of the pathogenesis of

AD (inappropriate or incomplete targets), biological heterogeneity

in enrolled patients, poor reliability of outcome measurements, and

design of clinical trials.3 A major reason for failure of trials is thought

to be enrollment of participants at a disease stage that might be too

advanced to benefit from the intervention being studied.3 Therefore,

some trials have shifted toward secondary prevention, targeting

participants at earlier clinical stages of disease, such as mild cognitive

impairment (MCI). Other secondary prevention trials target stages

that precedeMCI.4,5 However, heterogeneity in participantswithMCI,

along with low rate of cognitive decline and low conversion rates to

AD, makes it very difficult to detect differences between placebo and

treatment groups, in clinical trials that focus on earlier clinical stages.6

In this article, we focus on predicting which MCI patients are more

likely to decline based on their biomarker profiles.

The 2018 National Institute on Aging–Alzheimer’s Association

(NIA-AA) Research Framework provides a biological staging model for

AD known as the ATN system; it is based on neuropathologic changes

or biomarkers.7 The classification uses three types of biomarkers: amy-

loid (A), tau (T), and neurodegeneration (N), which are presumed to be

the central causal mechanisms for symptomatic AD. While using the

framework helps with defining AD as a biological construct, it does not

explicitly address the prediction of transitions among stages, an impor-

tant need for clinical practice and clinical trials. Enrollment of partici-

pants in trials based on the criteria specified in the framework reduces

the heterogeneity of the study population. However, to implement

effective trials, the study population—in both placebo and treatment

arms—has to be further enriched with participants that are expected

to progress within the time period of the study. If the rate of decline is

low in the placebo group in some individuals, it becomes more difficult

to demonstrate that the active treatment slows decline.8

In MCI targeted secondary prevention trials, one approach for

improving sensitivity to treatment effects is to enroll personswithMCI

at high risk for progression, identified based on data-driven predictive

models.8 While quantitative risk predictions for AD have been avail-

able for many years, these models have been incorporated into the

design of AD clinical trials on a limited basis, primarily by targeting per-

sons with a family history of AD, carriers of AD risk genes, or biomark-

ers of amyloid.4,5 In this study, we used data from the Alzheimer’s Dis-

ease Neuroimaging Initiative (ADNI) to investigate the performance

of various modeling strategies for prediction of incident dementia

among persons with MCI and to evaluate these models in the context

of the ATN framework. We hypothesized that data-driven predictive

models would provide improvements over classification criteria based

on empirical cut-offs to define amyloid or tau positivity or the pres-

RESEARCH INCONTEXT

1. Systematic review: Clinical trials frequently use specific

clinical criteria and different biomarkers for enrichment

of the study population. These criteria are usually based

on cut-offs or index scores derived from previous studies.

However, it has been suggested that data-driven predic-

tive models can further improve the enrichment process.

2. Interpretation: These studies indicate that predictive

models such as logistic regression and machine learning

classifiers areeffective tools for predictionof diseasepro-

gression.

3. Future directions: This study provides an approach to

improve prediction of disease progression using a vari-

ety of clinical features and biomarkers. Future research

should be conducted using data from clinical trials to

explore validity and generalizability of our models in the

setting of trials.

ence of neurodegeneration. Here, we used two progression-prediction

approaches: (1)ATN-basedclassificationusingdichotomousbiomarker

levels and (2) data-driven predictive models (logistic regression [LR]

andRUSBoostmachine learning [ML]) using continuous biomarker fea-

tures to classify participants into two classes. The data-driven models

use baseline data to divide persons withMCI into two classes, one that

resembles cognitively normal individuals (CN-like), and the other more

similar to individualswith dementia (dementia-like).Weassessed these

classifications at baseline by assessing their ability to predict incident

dementia. Subsequently, performance of all models was compared.

Moreover, we describe the frequency of ATN profiles and their long-

term clinical trajectory in CN-like and dementia-like classes, which

were identified by data-drivenmodels and clinical features.

1.2 Study conclusions and disease implications

Our results indicate that using a dichotomous biomarker levels

approach, we can achieve either high sensitivity or high specificity in

prediction of progression from MCI to dementia, but not both simul-

taneously. The overall performance of classifications derived from

dichotomous use of biomarkers predicted incident dementia less well

than the data-driven predictive models. Furthermore, we also showed

that clinical features could be as informative as biomarkers for predic-

tion of outcomes, a result discussed below.Ahigher rate of disease pro-

gression was observed in individuals with AD pathology compared to

individuals with no pathological change (A–T–N–) or suspected non-

AD pathology (SNAP, defined as A–T+N–, A–T–N+, and A–T+N+).

We showed that classification of persons with MCI using the

dichotomous biomarker levels (the presence of any of the three

cardinal features of AD pathologic change [classification-A: A+ or T+
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or N+ vs. no AD pathology]) as differentiating factors, we predicted

dementia onsetwith extremely high sensitivity but very low specificity.

Using dichotomous biomarker levels to define the AD continuum

based on amyloid positivity (classification-B: A+T±N± vs. others), the

sensitivity ofmodels decreased but specificity of themodels improved.

This method would identify virtually everyone with MCI who will

progress (high sensitivity) but would also include many people who

do not progress (modest specificity) over the timeframe of a typical

clinical trial. Considering expected annual incidence of dementia,

and due to low specificity and positive predictive value (PPV), using

these classification approachesmight not significantly improve patient

selection for a secondary prevention trial. This finding corresponds to

the observations that many cognitively normal older adults might have

evidence for presence of one of the cardinal biomarkers of AD, but do

not progress for extended periods of time.9

We also showed that dichotomous biomarker classification

using the stricter criteria of presence of advanced AD pathology

(classification-C: A+T+N+ vs. others), yields the highest specificities

among models, but at the cost of a major reduction in sensitivity.

This is compatible with prior studies indicating that highest rates of

short-term progression are in individuals with the A+T+N+ biomarker

profile.10 Therefore, using the latter classification as part of the enroll-

ment criteria, one can improve the power of a trial. However, assuming

that prevalence of A+T+N+ pathology in the general population is

similar to that in our study (≈21%), many more participants would

require biomarker assessments to identify sufficient individuals to

enroll the study. And if we treat people with amnestic MCI (aMCI)

who are A+T+N+ and treatment fails, failure might be attributed to

treating too late.11

Data-driven approaches (LR and RUSBoost) had significantly

higher performance than all dichotomous biomarker classification

approaches. Performance of our models was on par with the majority

of other studies that appliedML classifiers to clinical or biomarker data

to detect MCI participants expected to progress to dementia.12,13 The

observed differences among studies in predictionmay be due to differ-

ences in feature selection, engineeringmethods, or choice ofmodels. In

line with many of the prior studies, our study shows that using contin-

uous variables and a combination of different biomarkers can improve

accuracy of predicting progression fromMCI to dementia.13–16

Higher performance of data-driven classification over dichotomous

biomarker classification is, in part, due to the fact that data-driven

approaches do not rely solely on critical values to define positivity for a

biomarker and use richer information that exists in full regional amy-

loid positron emission tomography (PET) standardized uptake value

ratio (SUVR), regional metabolism, and full cerebrospinal fluid (CSF)

biomarker profiles. A dichotomous approach lends itself to simple

operational rules for enrollment but coarsens data and discards infor-

mative patterns of association among features.17 In our study, while

performance of RUSBoost ML models was slightly superior to LR-

based models, especially at later time points, the difference between

thesemethodswas not statistically significant. Prior studies comparing

the performance ofMLmodels versus “conventional” regression-based

classifications, such as LR, have shown mixed results.12,18 The failure

of ML models to consistently outperform regression-based methods

may be attributable, at least in part, to the feature selection process.

High dimensional data can introduce noise into multivariate models,

and together with a small number of subjects (high feature/subject

ratio), can result in over-fitting.19 In the current study, for LR-based

models, we selected features purposefully to avoid multicollinearity

and overfitting of data. We ran LR-based models without any feature

selection and found that performance of LR-basedmodels significantly

decreases (results not shown). One potential advantage of ensemble

ML models—such as RUSBoost—is that part of the feature-selection

process is embedded in themodels, which decreases the need for addi-

tional feature engineering steps.

Relative to the sample cumulative incident dementia (or observed

rate of dementia onset), RUSBoost models applied to biomarker fea-

ture set provided > 35% improvement in the prediction of demen-

tia over 2 years (model’s PPV = 53.6 vs. observed rate of demen-

tia onset = 18.0%) and > 45% over 4 years (model’s PPV = 68% vs.

observed rate of dementia onset = 22.2%). Similarly, the RUSBoost

model developed using clinical characteristics (clinical feature set) can

provide > 32% improvement over 2 years (PPV = 50.5 vs. observed

rate of dementia onset= 18.0%) and 45.1% improvement over 4 years

(Mmodel’s PPV= 67.3% vs. observed rate of dementia onset= 22.2%)

in prediction of progression to dementia.

In general, our findings indicate that using cheaper and more

accessible clinical characteristics as predictors can provide high-

performance models for the prediction of progression. These mod-

els perform similarly to those that use biological markers (i.e., ATN

biomarkers) as model features. However, it should be noted that

despite our attempt to minimize circularity in analysis (see Methods

section), it is still expected that the best predictor of a specific entity

(here, cognitive function) is going to bemeasures of that specific entity.

High performance of models that used only clinical features indicate

that collection of thewhole panel of AD biomarkers is not necessary to

identify MCI participants who are likely to progress. But this does not

mean that clinical characteristics alone are sufficient to enroll partici-

pants in trials. As our survival analysis indicates, even after classifica-

tion based on clinical features, individuals who are biomarker positive

for AD pathology tend to have a higher rate of progression to demen-

tia. In addition, enrolling patients with negative AD pathology (A– and

T–) who are likely to have fast clinical decline in trials that target AD

pathology, that is, therapies that target amyloid or tau, would decrease

the power of trials if AD-targeted medications fail in these individuals.

Characterization of the biological profile is essential to ensure the tar-

get pathology is present in the intervention group, while clinical bene-

fit, that is, improvement in cognitive function or a slowing of decline, is

essential for assessment of a trial’s success.

Based on the pathophysiological processes of AD, as proposed by

Jack et al.,11 presence of amyloid PET usually precedes CSF tau pos-

itivity (at detectable threshold), which is typically followed by fluo-

rodeoxyglucose (FDG) PET and magnetic resonance imaging (MRI) as

the last biomarkers to become abnormal. In other words, the highest

rates of short-term progression are expected to be among A+T+N+

andA+T+N– subgroups. Among individuals classified as CN-like, more
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than 30% are among A+T+N+ and A+T+N– subgroups. These indi-

viduals also have a higher rate of incident dementia based on the Cox

proportional hazard models, though the rate of decline is not as high

as those who have similar pathology and are classified as dementia-

like. These findings are compatible with the proposed pathophysiolog-

ical process of AD. However, some of the individuals who are at risk

of disease progression, in the short term, are not among A+T+N+ or

A+T+N–profiles, indicating the imperfect correlation between clinical

outcomes and presence of AD pathology. This might be due to the role

of other types of pathology that were not studied here.

In summary, this study indicates that data-driven predictive mod-

els are effective tools for prediction of disease progression amongMCI

individuals. Clinical features could be as informative as biomarkers for

prediction purposes; however, biomarkers can add value to predictions

and are essential for trials to enroll participants who actually have the

disease pathology that is being targeted by the intervention.

1.3 Study limitations and recommendations for
future studies

In the current study, we only focused on two data-driven models. Had

weselectedother classifiers or other feature-sets, resultsmayhavedif-

fered. In the ADNI sample, MCI and dementia diagnosis was not nec-

essarily due to AD, and we did not exclude subjects based on pres-

ence or absence of AD pathology. We chose this approach (1) because

ADNI used these clinical diagnoses for stratified enrollment of partici-

pants and (2) to avoid circularity problems that would arise if we used

biological predictors to define outcomes. Lack of pathologically con-

firmeddiagnosismakes it impossible for us tomake conclusions regard-

ing biological etiology of incident dementia. Furthermore, while ADNI

is one of the largest studies collecting biomarker data from individ-

uals in the AD spectrum, because there are eight distinct biomarker

profiles, the smallest group (A+T–N+) included only four individu-

als. Therefore, assessment of longitudinal changes and predictive per-

formance of models for individual ATN subgroups was not possible,

and for survival analysis we focused on larger subgroups (A–T–N–, A–

T±N±, andA+T±N±). As the next step, to further validate our findings,

future studies should use data from large consortiums of AD (e.g., NIA-

funded Alzheimer’s Disease Centers, iSTAGING cohorts, or the new

AI4AD project).

Another limitation of our study is thatweonly used data fromADNI,

a study with strict inclusion and exclusion criteria. This limitation on

generalizability can be addressed by applying these methods to other

study populations. One major challenge for assessment of reliability

and generalizability of predictive models is limited access to data from

clinical trials. While there are many large trials over the last decade,

access to data has proven challenging. When older data become avail-

able, it has often ceased to be relevant due to shifting ideas about opti-

mal biomarkers. To overcome this hurdle, we favor expanding public–

private collaboration to promote timely data-sharing.20,21 We believe

that application of predictive models in “real-world” practice has ben-

efits that extend well beyond enrichment of prospective trials. We

hypothesize that such models can be useful for at least two additional

reasons: First, these models could be applied to data from concluded

trials to identify patients who were expected to show decline. We

hypothesize that this approach might identify subgroups who showed

significant trends toward effectiveness of a drug and in extreme cases

it might even revive some of the failed trials, especially if poor subject

selection was the main reason for their failure. Second, once there are

effective treatments for AD, these models could be used to identify

individuals whowould benefit from primary or secondary prevention.

Finally, we used an automated feature selection method to iden-

tify important features for inclusion in LR models. Automated feature

selection engineering methods have proven to be essential for achiev-

ing high-performance predictive models22 and can lead to selection of

features without prior knowledge of biological importance. This is the

opposite of manual feature selection methods, in which features are

all selected based on prior knowledge and based on biological impor-

tance. While this might be considered a limitation of automated fea-

ture engineering, it can be viewed as an opportunity for identifying

new potential biological pathways and hypothesis generation, leading

to new studies.

2 CONSOLIDATED RESULTS AND STUDY
DESIGN

Approaches to predicting disease progression vary widely along at

least three key dimensions: the operational definition of the outcome

being predicted, the candidate features used for prediction, and the

nature of the statistical model used to make the prediction. In this

study, we used onset of dementia as the outcome of interest in persons

with aMCI.While staging of AD based on clinical criteria and cognitive

scores is not perfect,23 we use them to define the outcome as ADNI

used these diagnoses for stratified enrollment of participants. Further-

more, similar diagnostic criteria are being used universally in the inter-

ventional trials of AD. We divided candidate predictors (features) into

two sets, namely biomarker feature set, which comprised biomark-

ers including CSF, amyloid PET, and FDG-PET measures; and clinical

feature set, which included demographics, apolipoprotein E (APOE) ε4
allele count, and cognitive measures. We used these feature -sets to

predict clinical outcome using different statistical methods.

Our first method was confined to the biomarker feature set and

was developed based on dichotomous classification of biomarkers to

create profiles defined in the 2018 NIA-AA research framework. We

note that the ATN framework is not developed for the purpose of pre-

diction of clinical outcomes, but many studies use cut-offs on global

measures of amyloid, tau, or neurodegeneration to classify individu-

als based on their ATN profile to predict clinical progression or enroll

participants in the study.24–27 Using dichotomous biomarker levels, we

classified aMCI individuals to four different groups (see section 3.1.6).

This approach yielded classifications with either high sensitivities and

low specificities or low sensitivities and high specificities.

The second method was using data-driven models and continu-

ous features to predict disease progression. We used two different
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data-driven approaches: (1) multivariate LR and (2) the RUSBoost clas-

sification tree, which is a ML model. Using baseline data from CN and

dementia participants, LR or RUSBoost models were trained to dif-

ferentiate CN participants from individuals diagnosed with dementia.

Subsequently, the trained model was applied to aMCI participants to

classify them as “CN-like” (participants who are more similar to CNs

andmore likely to remain cognitively stable) or “dementia-like” (partic-

ipantswho aremore similar to peoplewith dementia andmore likely to

progress to dementia), based on probability of belonging to one group

or the other (cut-off = 0.5). Performance of models and the accuracy

of the predicted outcomes for the aMCI population—namely, likely to

remain stable versus likely to progress to dementia—was evaluated

using available longitudinal data. Compared to the first method (ATN-

based classification), both LR- and RUSBoost models had better per-

formance in prediction of disease progression: Sensitivity of LR-based

models decreased from 73.6% at 6 months to 48.0% at 4 years, while

specificity increased from 77.6% at 6 months to 90.6% at 4 years of

follow-up. For theRUSBoostmodel the sensitivity declined from73.6%

at 6 months to 61.5% at 4 years, and the specificity increased from

75.1% to 91.7% at 4 years of follow-up. There was no significant dif-

ference between performance of LR models and RUSBoost models at

any timeframe.

Subsequently, we applied LR and RUSBoost models to the clin-

ical feature set to predict disease progression in aMCI individuals.

Performance of these models was comparable to models using the

biomarker feature set. Sensitivity for LRmodels decreased from81.8%

at 6 months to 63.4% at 4 years, and specificity increased from 72.4%

at 6 months to 90.1 at 4 years of follow-up. RUSBoost models showed

declining sensitivity from 90.9% at 6 months to 63.4% at 4 years of

follow-up and increasing specificity from 73.7% to 91.2%.

Cox proportional hazard models showed that in the CN-like sub-

group identified by data-driven methods and the clinical feature set,

individuals with AD pathology had higher risk of conversion to demen-

tia than the groupwith normal biomarkers (reference group).

3 DETAILED METHODS AND RESULTS

3.1 Methods

3.1.1 ADNI study design

The data used for this analysis were downloaded from the ADNI

database in January 2020. ADNI is an ongoing effort, which was

launched in 2003 as a public–private partnershipwith the primary goal

of testing whether serial MRI, PET, other biological markers, and clin-

ical and neuropsychological assessments can be combined to measure

the progression ofMCI andmild dementia. For up-to-date information

on ADNI, see adni.Ioni.usc.edu. The individuals included in the current

study were initially recruited as part of ADNI-GO, and ADNI-2. ADNI

data collection was approved by the institutional review boards of all

participating institutions. Informedwritten consentwas obtained from

all participants at each site.

F IGURE 1 Flowchart of study participants. A, amyloid; ADNI,
Alzheimer Disease Neuroimaging Initiative; CN, cognitively normal;
CSF, cerebrospinal fluid; FDG, 18F-fluorodeoxyglucose; MCI, mild
cognitive impairment; N, neurodegeneration; PET, positron emission
tomography; T, tau

3.1.2 Participants

A total of 787 participants, including 250 CN, 415 aMCI, and 122 with

dementia diagnosis at baselinewereeligible for this study. Inclusion cri-

teria in this study were having amyloid PET (A), CSF p-tau examination

(T), andFDGPET (N) at baseline and at least onewaveof follow-up. Fig-

ure 1 provides a flowchart of study participants.

CN participants hadMini-Mental State Examination (MMSE) scores

of 24 or higher and a Clinical Dementia Rating (CDR) score of 0.

All MCI participants were diagnosed as having aMCI; this diagnostic

classification required MMSE scores between 24 and 30 (inclusive),

a memory complaint, objective memory loss measured by education-

adjusted scores on the Wechsler Memory Scale Logical Memory II,

a CDR of 0.5, absence of significant impairment in other cognitive

domains, essentially preserved activities of daily living, and absence

of dementia. All CN participants selected for this study remained

cognitively normal within the first 6 months of follow-up during

the first year of follow-up. The subjects with dementia had to sat-

isfy the National Institute of Neurological and Communicative Dis-

orders and Stroke–Alzheimer’s Disease and Related Disorders Asso-

ciation (NINCDS-ADRDA) criteria for clinically defined probable AD,

and have MMSE scores between 20 and 26 (inclusive), and CDR of

0.5 or 1.

3.1.3 Cognitive and functional scores

Neurocognitive tests included Trail Making Test part B (TMT-B), the

Functional ActivitiesQuestionnaire (FAQ), theMMSE,Alzheimer’sDis-

ease Assessment Scale Cognitive subscale (ADAS-cog), the Rey’s Audi-

tory Vocabulary List Test (RAVLT), Montreal Cognitive Assessment

(MoCA), Logical Memory II, and the CDR.

http://adni.Ioni.usc.edu
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3.1.4 CSF measurements

CSF amyloid beta (Aβ)42, tau, and phosphorylated tau (p-tau) were

measured at the ADNI Biomarker Core Laboratory (University of

Pennsylvania) using the multiplex xMAP Luminex platform (Luminex

Corporation) with Innogenetics (INNO-BIA AlzBio3; for research use

only reagents) immunoassay kit-based reagents.27 All CSF biomarker

assays were performed in duplicate and averaged.

3.1.5 Neuroimaging

Amyloid PET imaging was collected with 18-F florbetapir as the radio-

tracer; images were averaged, spatially aligned, interpolated to a com-

mon voxel size (1.5 mm3), and smoothed to a common resolution of 8-

mm full width at half maximum.26 FDG-PET data were acquired and

reconstructed according to a standardized protocol (http://adni.loni.

usc.edu/). Spatial normalization of each individual’s PET image to the

standardMNI template was conducted using SPM5.25

Amyloid abnormal (A+) and normal (A–) groups were determined

by applying a cut-off value of 1.11 for the global florbetapir SUVR.27

The global 18F-florbetapir SUVRwas calculated by averaging the 18F-

florbetapir retention ratio from four large cortical gray matter regions

(frontal, anterior cingulate, precuneus, and parietal cortex) using the

cerebellum as a reference region.

Whether tau pathology was abnormal (T+) or normal (T–) was

determined by a cut-off value of 23 pg/mL for CSF p-tau level.27

Based on theNIA-AAATN system, we can evaluate neurodegenera-

tion status using either FDG-PET or structural MRIs, but it is not clear

which of these methods leads to superior results. Here, for simplicity,

we defined neurodegeneration status (N+ or N–) using the average of

angular, temporal, and posterior cingulate FDG PET values with a cut-

off value at 1.21.25 Results presented in the body of the article are

based on this method. In a secondary analysis, abnormal Nwas defined

as hippocampal volume adjusted for total intracranial volume (HVa) of

less than 6,723mm328 (supporting information).

3.1.6 Statistical analysis

Two sets of features were used for data analysis:

∙ Biomarker feature set (imaging and CSF biomarkers) included

variables from all modalities that contribute to creation of ATN

biomarker profile: (1) all CSF biomarkers (Aβ1-42, tau, p-tau181p),
(2) regional amyloid PET measures (florbetapir SUVR of 75 brain

regions), (3) regional FDG PET (FDG measures from five different

brain regions). All variables were included in models as continuous

variables unless stated otherwise. The full list of variables is pro-

vided in the supporting information.

∙ Clinical feature set (demographics, clinical characteristics andAPOE

status) included (1) demographics: age, sex, education; (2) number

of APOE ε4 alleles; and (3) cognitivemeasures: ADAS-Cog11, RAVLT

(immediate recall, 30-min delayed recall, and recognition), TMT-B,

FAQ total score, MoCA. To decrease circularity with clinical diag-

nostic criteria, MMSE, logical memory, and CDR scores were not

included in this feature set.

The goal of predictive modeling was to partition persons with aMCI

into two groups: one that did not progress to dementia, and another

that would progress to dementia within the next 4 years of follow-up.

Two different methods were used to predict progression:

∙ LR-based classifiers were used as a traditional multivariate statisti-

cal method for predicting progression.

∙ RUSBoost:While manyMLmodels have proven to be effective tools

for predictions of outcomes in AD, in a previous study we showed

that the ensemble ML models perform better than other ML mod-

els in predicting clinical outcomes.16 RUSBoost is a hybrid sam-

pling/boosting algorithm for learning from skewed training data. In

our case, there were 250 CN and 122 AD participants.

The traditional approach to develop clinical risk prediction mod-

els involves the use of regression models—specifically, logistic regres-

sion to predict disease presence (diagnosis) or disease outcomes

(prognosis).29 Definitions of what constitutes “traditional” multivari-

ate statistical modeling for prediction and its differences withML have

been discussed at length in the literature, yet the distinction is not

clear-cut.30 Studies comparing performance of ML models versus tra-

ditionalmultivariatemodels suchas LRshave shownmixed results.29,30

Feature selection is a dimensionality reduction technique that

selects only a subset of measured features (predictors) that provide

the best predictive power in modeling the data. It is particularly useful

when dealing with very high-dimensional data or when modeling with

all features is undesirable. Purposeful feature selection is particularly

important for LR models as multicollinearity and high dimensionality

of features has proven to substantially decrease performance of these

models.31

For feature selection for LR models, as the first step (and to avoid

multicollinearity), pairs of variables for which the correlation coeffi-

cient was > 0.8 were identified and all but one of such variables were

deleted. Next, we followed the method proposed by Bursac et al.31 to

select the final features included in LRmodels. The final list of features

selected after these steps is provided in the supporting information.

For feature selection for the RUSBoost model, considering that this

tree-based ensemble uses multiple weak learning and boosting meth-

ods to identify the best features, we did not need to use any additional

feature engineering and all available features were included as predic-

tors in this model.

To predict disease progression from aMCI to dementia, MCI partici-

pants were classified using one of the followingmethods:

1. ATN-based classification using dichotomous biomarker levels. Clas-

sification was based on dichotomizing biomarker measures using

the cut-offs mentioned above. As will be depicted in Table 2, the

sample size of some the eight ATN subgroups was very small, and

http://adni.loni.usc.edu/
http://adni.loni.usc.edu/
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therefore, evaluating predictive value of individual ATN subclasses

was not possible. Therefore, we used the following criteria and the

larger ATN groupings for classification:

a. Dichotomous ATN classification A: any pathology (A+ or T+ or

N+) vs. no AD pathology (A–T–N–);

b. Dichotomous ATN classification B: AD continuum (A+/T±/N±)

vs. others;

c. Dichotomous ATN classification C: advanced AD pathology

(A+T+N+) vs. others; and

d. Dichotomous ATN classification D: suspect non-AD pathology

(SNAP; A–T+N± or A–T±N-) vs. others.

2. Data-driven logistic regression. Using baseline data from CN and

dementia participants, a LR model was trained to differentiate par-

ticipants with dementia from healthy controls. A 10-fold cross-

validation procedure was used in all models for testing validity of

the LRmodels. Cross-validation is an established statistical method

for validating a predictive model, which involves training several

parallel models, each based on a subset of the training data. Then,

themodel performance is evaluated based on the average accuracy

in predicting the labels of the omitted portion of the training data.32

Cross-validation can detect if models are overfitted by determin-

ing how well the model generalizes to other subsets of datasets by

partitioning the data. Subsequently, the trained model was applied

to aMCI participants to classify them as “CN-like” (participantswho

aremore [>50%) similar toCNs and expected to remain cognitively

stable) or “dementia-like” (participants who are more [> 50%) simi-

lar to people with dementia).

3. Data-driven RUSBoost. Using data from CN and dementia par-

ticipants, RUSBoost models were applied to data from CN and

dementia groups for training. Similar to LR models, a 10-fold cross-

validation procedure was used in all models for testing validity of

these models. Trained models were applied to aMCI participants to

classify them as “CN-like” or “dementia-like.”

Performance ofmodels and the accuracy of the predicted outcomes

for the aMCI population—namely, likely to remain stable versus likely

to progress to dementia—was evaluated using available longitudinal

data. Sensitivity, specificity, PPV, and negative predictive value (NPV)

for each model were calculated. Considering change in available longi-

tudinal data (due to drop outs, death, etc.), the performance of mod-

els is reported separately for each follow-up at 6, 12, 24, 36, and

48months.

To judge classification performance,weused theMcNemar test33 to

compare thepairwiseperformanceof classifications at95%confidence

level (α = 0.05): z =
Sab−Sba√
Sab−Sba

, where Sab refers to the samples correctly

classified in classification a, but incorrectly classified in classification b,

and Sba indicates the samples that are misclassified in classification a,

but correctly classified in classification b.

For biomarker profiling and longitudinal outcome assessment, char-

acteristics and the biomarker profile of each class identified by theML

model (CN-like vs. dementia-like) are reported. In addition, to assess

the risk of progression from aMCI to dementia, we constructed unad-

justed Cox proportional hazardmodels.

TABLE 1 Characteristics of study population by clinical diagnosis

Variables CN aMCI Dementia

N 250 415 122

Age, years 72.8 (6.1) 71.5 (7.4) 74.7 (8.3)

Male* 114 (45.6) 230 (55.4) 71 (58.2)

APOE ε4 carriers* 72 (28.8) 199 (48.0) 80 (65.6)

Education, years 16.6 (2.5) 16.2 (2.6) 15.7 (2.7)

MMSE score 29.1 (1.2) 28.0 (1.7) 23.1 (2.1)

ADAS-Cog score 5.7 (3.0) 9.2 (4.4) 20.7 (7.0)

Note: All values aremean (standard deviation) unless otherwise stated.

*Values represent: number (%).

Abbreviations: ADAS-Cog, Alzheimer Disease Assessment Scale–Cognitive

subscale 11 score; aMCI, amnestic mild cognitive impairment; APOE,
apolipoprotein E; CN, cognitively normal;MMSE,Mini-Mental State Exami-

nation.

All statistical analyses were conducted using MATLAB© (version

2020a) or SPSS statistical software (version 25, IBM statistics).

3.2 Results

3.2.1 Study characteristics

The demographic, clinical, and imaging characteristics of all partici-

pants by diagnostic group are shown in Table 1. Characteristics of

aMCI participants by ATN biomarker classification are summarized in

Table 2. Themean (standard deviation [SD]) age of the participants was

72.4 years; 52.7%weremen; 98.7%had 12 years ormore of education;

and 47% had an APOE ε4 allele. Among 415 individuals with aMCI, 388

participantswere assessed at 6months, 392 participants at 1 year, 339

participants at 2 years, 291 at 3 years, and 234 at 4 years. The cumu-

lative proportions of individuals who progressed from aMCI to ADwas

5.7%at6months, 9.9%at1year, 18.0%at2years, 21.3%at3years, and

22.2% at 4 years of follow-up. Of persons with aMCI, 79 (19.0%) had

normal biomarkers, 110 (26.5%) had SNAP, and 226 (54.5%) had AD

pathological changes. Characteristics of aMCI participants were also

calculated usingHVa as theNmeasure (Table S1 in supporting informa-

tion). Biomarker characteristics of aMCI participants based on follow-

up diagnosis (stable aMCI vs. converters to dementia) are summarized

in Table S2 in supporting information.

3.2.2 Prediction performance of different methods

Dichotomous ATN classification A (any pathology [A+ or T+ or N+]

versus no AD pathology [A–T–N–]): This approach classifies partici-

pants into a groupwith noADbiomarker and another groupwith any of

the amyloid, tau, or neurodegeneration biomarkers. This classification

showed very high sensitivities (range: 96.8%–100%) but specificities

were very low (range: 19.1%–26.9%) across all timeframes (Table 3).
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TABLE 2 Characteristics of 415 aMCI participants by ATN biomarker classification

Classification

Normal

biomarker Suspect non-AD pathology (SNAP) AD continuum

Variable A–T–N– A–T+N– A–T–N+ A–T+N+ A+T–N– A+T+N– A+T–N+ A+T+N+

N* 79 (19.0) 71 (17.1) 26 (6.2) 13 (3.1) 15 (3.6) 117 (28.1) 4 (1.0) 90 (21.6)

Age, years 68.21 (7.34) 69.66 (8.20) 73.20 (7.70) 76.07 (7.22) 71.26 (5.00) 72.64 (7.29) 77.80 (6.60) 73.00 (6.42)

Male* 41 (51.9) 36 (50.7) 17 (65.4) 9 (69.2) 7 (46.7) 65 (55.6) 3 (75.0) 52 (57.8)

APOE ε4 carriers* 19 (24.1) 18 (24.6) 6 (23.1) 4 (30.8) 6 (40.0) 76 (65.0) 3 (75.0) 67 (74.6)

Education, years 16.73 (2.36) 16.45 (2.46) 15.85 (2.75) 15.00 (2.44) 15.47 (2.90) 15.90 (2.70) 17.00 (3.83) 16.31 (2.82)

MMSE score 28.84 (1.30) 28.61 (1.39) 28.50 (1.86) 26.69 (1.65) 28.67 (1.11) 27.88 (1.82) 28.75 (0.96) 27.19 (1.87)

ADAS-Cog score 6.86 (3.35) 7.87 (3.34) 8.73 (3.50) 10.31 (1.01) 8.13 (4.73) 9.24 (3.99) 11.75 (2.63) 12.49 (5.06)

Amyloid PET, SUVR 1.01 (0.05) 1.02 (0.05) 1.01 (0.07) 1.01 (0.06) 1.25 (0.19) 1.37 (0.17) 1.13 (0.03) 1.42 (0.14)

CSF p-tau 17.67 (3.89) 35.3 (11.2) 15.85 (3.65) 38.2 (12.83) 18.64 (3.13) 49.86 (21.5) 13.92 (3.3) 57.58 (21.5)

FDG 1.35 (0.09) 1.33 (0.09) 1.15 (0.07) 1.14 (0.04) 1.32 (0.07) 1.32 (0.09) 1.14 (0.05) 1.11 (0.08)

Note: All values aremean (standard deviation) unless otherwise stated.

*Values represent: number (%).
aProgression rate to dementia or expected prevalence.

Abbreviations: A–/+, amyloid status using amyloid PET; ADAS-Cog, Alzheimer Disease Assessment Scale–Cognitive subscale 11 score; aMCI, amnestic mild

cognitive impairment; CSF, cerebrospinal fluid; FDG, 18F-fluorodeoxyglucose;MMSE,Mini-Mental State Examination;N–/+, neurodegeneration or neuronal

injury normal using FDG-PET; PET, positron emission tomography; SUVR, standardized uptake value ratio; T–/+, tau status using CSF p-tau.

DichotomousATNclassificationB (ADcontinuum [A+T±N±] versus

others): This approach classifies persons with MCI and amyloid posi-

tivity into one group (AD pathologic change) and all others into a sec-

ond pathologic group (amyloid negative). This approach had high sen-

sitivities and low specificities for progression prediction of dementia

(Table 3). Sensitivities at 6 months, 1 year, 2 years, 3 years, and 4 years

of follow-upwere86.3%,84.6%,88.5%,87.1%, and80.7%, respectively.

Specificity gradually increased with longer follow-up periods and was

46.7% at 6months, 48.7% at 1 year, 54.6% at 2 years, 57.6% at 3 years,

and 61.0% at 4 years. This method favored sensitivity over specificity

for progression.

Dichotomous ATN classification C (advanced AD pathology

[A+T+N+] versus others): In this approach, positivity for amyloid,

tau, and neurodegeneration was required to classify the high-risk

group. Those missing a single biomarker were considered low

risk. This method yielded low sensitivity and very high specificity for

progression-prediction across all timeframes. Sensitivities at 6months,

1 year, 2 years, 3 years, and 4 years of follow-up were 45.4%, 51.2%,

54.1%, 43.5%, and 48.0%, respectively. Specificities were of 83.3% at

6 months, 85.8% at 1 year, 91.3% at 2 years, 93.4% at 3 years, and

95.6% at 4 years of follow-up.

Dichotomous ATN classification D (SNAP [A–T+N± or A–T±N–]

versus others): This approach assesses progression prediction for indi-

viduals with non-AD pathology to dementia. This approach yielded

very low sensitivity (range: 9.6–17.3) and modest specificities (range:

65.9–72.4) across different timeframes.

All dichotomous ATN classifications were redeveloped using a hip-

pocampal volume cut-off to define neurodegeneration (Table S1).

Data-driven models using biomarker feature set: Performance of

data-driven classifiers in differentiating cognitively normal from AD

participants using biomarker feature set is summarized in Table S3 in

supporting information. Data-driven methods showed better perfor-

mance in detecting individuals who progressed to dementia (Table 3).

Sensitivity of LR-based models decreased from 73.6% at 6 months to

48.0% at 4 years, and specificity increased from 77.6% at 6 months to

90.6%at 4 years. For theRUSBoostmodel the sensitivity declined from

73.6% at 6 months to 61.5% at 4 years, and the specificity increased

from 75.1% to 91.7% at 4 years.

The McNemar test showed that both data-driven methods outper-

formed ATN-based models in prediction of disease progression at all

timeframes (P < 0.001 for all). Performance of data-driven methods

did not significantly differ from each other for prediction of disease

progression at any timeframe (P> 0.05 at all timeframes). Data-driven

models were also created using MRI brain region volumes (derived

from FreeSurfer instead of FDG PETmeasures, producing comparable

performance [Table S4 in supporting information]).

Data-driven models using clinical feature set: The LR model had

sensitivity of 81.8% at 6 months, 76.9% at 1 year, 72.1% at 2 years,

66.1% at 3 years, and 63.4% at 4 years of follow-up, and specificity

of 72.4% at 6 months, 75.0% at 1 year, 80.9% at 2 years, 86.0%

at 3 years, and 90.1% at 4 years of follow-up (Table 4). RUSBoost

using the clinical feature set also showed declining sensitivity from

90.9% at 6 months to 63.4% at 4 years of follow-up and increasing

specificity from 73.7% to 91.2% (Table 4). The McNemar test did not

show any significant difference between the two data-driven mod-

els at any of the five considered conversion intervals (P > 0.05 at all

timeframes).

Prevalence of stable versus converter MCIs within CN-like and

dementia-like classes for LR and RUSBoost models is summarized in

Table S5 in supporting information.
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TABLE 3 Performance of predictivemodels in prediction of progression from aMCI to dementia at different follow-up time points. Models
developed using biomarker feature set

Model Follow-up, years Sensitivity, % Specificity, % PPV, % NPV, % AUC Observed rate, %a

ATN classification-Ab 0.5 100 19.1 6.9 100 – 5.7

1 97.44 20.4 11.9 98.6 – 9.9

2 98.36 22.6 21.8 98.4 – 18.0

3 96.77 24.8 25.8 96.6 – 21.3

4 98.08 26.9 27.7 98.0 – 22.2

ATN classification-Bb 0.5 86.3 46.7 8.8 98.2 – 5.7

1 84.6 48.7 15.4 96.6 – 9.9

2 88.5 54.6 30.0 95.6 – 18.0

3 87.1 57.6 35.7 94.2 – 21.3

4 80.7 61.0 37.1 91.7 – 22.2

ATN classification-Cb 0.5 45.4 83.3 14.0 96.2 – 5.7

1 51.2 85.8 28.5 94.1 – 9.9

2 54.1 91.3 57.8 90.0 – 18.0

3 43.5 93.4 64.2 85.9 – 21.3

4 48.0 95.6 75.7 86.5 – 22.2

ATN classification-Db 0.5 13.6 72.4 2.8 93.3 – 5.7

1 12.8 71.6 4.7 88.1 – 9.9

2 9.8 67.9 6.3 77.4 – 18.0

3 9.6 67.2 7.4 73.3 – 21.3

4 17.3 65.9 12.6 73.6 – 22.2

Logistic regression 0.5 73.6 77.6 14.5 97.2 0.71 5.7

1 69.2 81.3 29.0 95.9 0.75 9.9

2 67.2 88.4 56.1 92.4 0.78 18.0

3 50.0 90.3 58.4 86.9 0.70 21.3

4 48.0 90.6 59.5 85.9 0.69 22.2

RUSBoost Tree 0.5 73.6 75.1 13.3 97.1 0.69 5.7

1 69.2 78.1 25.9 95.8 0.74 9.9

2 72.1 86.3 53.6 93.3 0.79 18.0

3 64.5 90.3 64.5 90.3 0.77 21.3

4 61.5 91.7 68.0 89.3 0.77 22.2

aObserved rate of dementia onset (or cumulative incident dementia) based on longitudinal data at each timeframe.
bATN classification-A, classifies participants based on presence of any AD pathology (any AD pathology vs. normal AD pathology); ATN classification-B, clas-

sifies participants based on presence of any pathology (A+T±N± vs. others); ATN classification-C, classifies participants based on presence of advanced

AD pathology (A+T+N+ vs. others); and ATN classification-D, classifies participants based on presence of any non-AD pathology (A–T+N± or A–T±N– vs.

others).

Abbreviations: AD, Alzheimer’s disease; aMCI, amnestic mild cognitive impairment; ATN, amyloid, tau, neurodegeneration; AUC, area under the curve; NPV,

negative predictive value; PPV, positive predictive value.

3.2.3 Biomarker profile in each aMCI class
(CN-like versus dementia-like)

Table 5 summarizes characteristics of aMCI participants classified as

CN-like and dementia-like using the data-driven approaches and clin-

ical feature-set predictors (demographics, APOE ε4, cognitive scores).

Using both approaches, the proportion of abnormal amyloid, tau,

and neurodegeneration was significantly higher in the dementia-like

group compared to the CN-like group. Figure 2 summarizes the

ATN biomarker profile of CN-like and dementia-like groups as clas-

sified by RUSBoost models. Among the dementia-like group, 74.6%

of participants had A+T+N± pathology, compared to 40% in the

CN-like group. The proportion of A+T+N+ was 12.1% in the CN-

like group and 45.8% in the dementia-like group. SNAP accounted

for 15.2% of the dementia-like group and 31.4% of the CN-like

group. The proportion of normal biomarker profile (A–T–N–) was
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TABLE 4 Performance of predictivemodels in prediction of progression from aMCI to dementia at different follow-up time points

Model

Follow-up

time, years Sensitivity, % Specificity, % PPV, % NPV, % Accuracy, % AUC

Observed

rate, %a

Logistic regression 0.5 81.8 72.4 15.1 98.5 72.9 0.77 5.7

1 76.9 75.0 25.4 96.7 75.2 0.76 9.9

2 72.1 80.9 45.3 92.9 79.3 0.77 18.0

3 66.1 86.0 56.1 90.3 81.7 0.76 21.3

4 63.4 90.1 64.7 89.6 84.1 0.77 22.2

RUSBoost Tree 0.5 90.9 73.7 17.2 99.2 74.7 0.82 5.7

1 76.9 76.4 26.5 96.7 76.5 0.77 9.9

2 73.7 84.1 50.5 93.6 82.3 0.79 18.0

3 72.5 89.0 64.2 92.3 85.5 0.81 21.3

4 63.4 91.2 67.3 89.7 85.0 0.77 22.2

Note:Models developed using clinical feature set.
aObserved rate of dementia onset (or cumulative incident dementia) based on longitudinal data at each timeframe.

Abbreviations: AD, Alzheimer’s disease; aMCI, amnestic mild cognitive impairment; ATN, amyloid, tau, neurodegeneration; AUC, area under the curve; NPV,

negative predictive value; PPV, positive predictive value.

TABLE 5 Characteristics of aMCI participants based on logistic regression (LR) models and RUSBoost machine learning classification using
clinical feature-set (demographics, APOE ε4, and cognitive scores)

Model RUSBoost LR

Classification CN-like Dementia-like P-value b CN-like Dementia-like P-value b

N, % 297 (71.5) 118 (28.5) – 292 (70.4) 123 (29.6) –

Clinical feature set Age, years 70.80 (7.4) 73.30 (7.09) 0.002 70.4 (7.32) 74.05 (7.04) <0.001

Male a 156 (52.5%) 74 (62.7%) 0.060 152 (52.1%) 78 (63.4%) 0.034

APOE ε4 carriers a 128 (43.1%) 71 (60.2%) <0.001 116 (39.7%) 83 (67.4%) <0.001

Education, years 16.29 (2.54) 15.96 (2.85) 0.242 16.14 (2.56) 16.34 (2.79) 0.471

MMSE score 28.44 (1.55) 27.14 (1.78) <0.001 28.48 (1.50) 27.12 (1.83) <0.001

ADAS-Cog score 7.36 (2.90) 13.97 (4.1) <0.001 7.49 (2.99) 13.41 (4.57) <0.001

Biomarker feature set Amyloid PET, SUVR 1.16 (0.20) 1.33 (0.24) <0.001 1.15 (0.20) 1.35 (0.22) <0.001

CSF p-tau 34.84 (21.0) 49.29 (23.2) <0.001 35.07 (21.50) 48.16 (22.53) <0.001

FDG 1.30 (0.12) 1.18 (0.12) <0.001 1.31 (0.14) 1.17 (0.16) <0.001

Note. All values aremean (standard deviation) unless otherwise stated.
aValues represent: number (%).
bUsing t-test for continuous variables and chi-square test for categorical variables.

Abbreviations: ADAS-Cog, Alzheimer Disease Assessment Scale–Cognitive subscale 11 score; aMCI, amnestic mild cognitive impairment; APOE, apolipopro-
tein E; CN, cognitively normal; CSF, cerebrospinal fluid; FDG, 18F-fluorodeoxyglucose; LR, logistic regression; MMSE, Mini-Mental State Examination; PET,

positron emission tomography; SUVR, standardized uptake value ratio.

24.9% in the CN-like group and only 4.2% in the dementia-like

group.

3.2.4 Longitudinal clinical outcomes in aMCI
classes based on ATN profiles

Cox proportional hazards models were conducted to estimate inci-

dent dementia, for three different ATN profiles in each class of aMCI

(CN-like vs. dementia-like), as identified by data-driven models and

the clinical feature set. In the CN-like class, the subgroup with AD

pathology had a significantly higher risk of conversion to dementia (LR

model: hazard ratio [HR] = 17.4, 95% confidence interval [CI] = 2.36–

128.1, P = 0.005; RUSBoost model: HR = 16.5, 95% CI = 2.24–121.8,

P = 0.006) compared to the group with normal biomarkers. There

was no significant difference between ATN profiles in the dementia-

like class as defined by either data-driven model. Figure 3 exhibits the

Kaplan-Meier survival curves.

Using the biomarker feature set, a total of 36 participantswere clas-

sified into dementia-like only byRUSBoostmodel, 22 participantswere
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F IGURE 2 ATN biomarker profile of aMCI participants in different classification groups. Classificationmodel is developed by applying
RUSBoostMLmodels (top) or logistic regression (LR) models (bottom) to demographics, APOE ε4 status, and neuropsychological tests. Numbers
represent the percentage in a particular color. A, amyloid; aMCI, amnestic mild cognitive impairment; APOE, apolipoprotein E; CN, cognitively
normal; FDG, 18F-fluorodeoxyglucose; ML, machine learning; N, neurodegeneration; SUVR, standardized uptake value ratio; T, tau

classified into dementia-like only by LRmodel, 75 individualswere clas-

sified into dementia-like by both models, and 282 were classified into

CN-like by both models. To evaluate the differences between these

models andhowthose impacted the long-termprogressionpredictions,

we ran additional Cox regression models stratifying the sample into

four groups of CN-like, RUSBoost dementia-like only, LR dementia-

like, and both-model dementia-like. Results indicate that compared to

the group identified as CN-like by both models, individuals who were

identified as dementia-like by one or both models are more likely to

progress to dementia (Figure S1 in supporting information). There was

no significant difference between progression rate among those who

were classified as dementia-like by RUSBoost versus those classifies as

dementia-like only by LRmodel.
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